Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
1.
Cells ; 11(5)2022 03 03.
Article in English | MEDLINE | ID: covidwho-1731951

ABSTRACT

Pulmonary senescence is accelerated by unresolved DNA damage response, underpinning susceptibility to pulmonary fibrosis. Recently it was reported that the SARS-Cov-2 viral infection induces acute pulmonary epithelial senescence followed by fibrosis, although the mechanism remains unclear. Here, we examine roles of alveolar epithelial stem cell senescence and senescence-associated differentiation disorders in pulmonary fibrosis, exploring the mechanisms mediating and preventing pulmonary fibrogenic crisis. Notably, the TGF-ß signalling pathway mediates alveolar epithelial stem cell senescence by mechanisms involving suppression of the telomerase reverse transcriptase gene in pulmonary fibrosis. Alternatively, telomere uncapping caused by stress-induced telomeric shelterin protein TPP1 degradation mediates DNA damage response, pulmonary senescence and fibrosis. However, targeted intervention of cellular senescence disrupts pulmonary remodelling and fibrosis by clearing senescent cells using senolytics or preventing senescence using telomere dysfunction inhibitor (TELODIN). Studies indicate that the development of senescence-associated differentiation disorders is reprogrammable and reversible by inhibiting stem cell replicative senescence in pulmonary fibrosis, providing a framework for targeted intervention of the molecular mechanisms of alveolar stem cell senescence and pulmonary fibrosis. Abbreviations: DPS, developmental programmed senescence; IPF, idiopathic pulmonary fibrosis; OIS, oncogene-induced replicative senescence; SADD, senescence-associated differentiation disorder; SALI, senescence-associated low-grade inflammation; SIPS, stress-induced premature senescence; TERC, telomerase RNA component; TERT, telomerase reverse transcriptase; TIFs, telomere dysfunction-induced foci; TIS, therapy-induced senescence; VIS, virus-induced senescence.


Subject(s)
COVID-19 , Idiopathic Pulmonary Fibrosis , Telomerase , Cellular Senescence , Humans , SARS-CoV-2 , Stem Cells/metabolism , Telomerase/metabolism
2.
Nucleic Acids Res ; 50(1): e4, 2022 01 11.
Article in English | MEDLINE | ID: covidwho-1450402

ABSTRACT

Efficient annotation of alterations in binding sequences of molecular regulators can help identify novel candidates for mechanisms study and offer original therapeutic hypotheses. In this work, we developed Somatic Binding Sequence Annotator (SBSA) as a full-capacity online tool to annotate altered binding motifs/sequences, addressing diverse types of genomic variants and molecular regulators. The genomic variants can be somatic mutation, single nucleotide polymorphism, RNA editing, etc. The binding motifs/sequences involve transcription factors (TFs), RNA-binding proteins, miRNA seeds, miRNA-mRNA 3'-UTR binding target, or can be any custom motifs/sequences. Compared to similar tools, SBSA is the first to support miRNA seeds and miRNA-mRNA 3'-UTR binding target, and it unprecedentedly implements a personalized genome approach that accommodates joint adjacent variants. SBSA is empowered to support an indefinite species, including preloaded reference genomes for SARS-Cov-2 and 25 other common organisms. We demonstrated SBSA by annotating multi-omics data from over 30,890 human subjects. Of the millions of somatic binding sequences identified, many are with known severe biological repercussions, such as the somatic mutation in TERT promoter region which causes a gained binding sequence for E26 transformation-specific factor (ETS1). We further validated the function of this TERT mutation using experimental data in cancer cells. Availability:http://innovebioinfo.com/Annotation/SBSA/SBSA.php.


Subject(s)
COVID-19/virology , Computational Biology/instrumentation , Genomics/instrumentation , Mutation , Proteomics/instrumentation , SARS-CoV-2 , 3' Untranslated Regions , Algorithms , Amino Acid Motifs , COVID-19/metabolism , Computational Biology/methods , Computers , Genetic Techniques , Genome, Human , Genomics/methods , Humans , Internet , MicroRNAs/metabolism , Phenotype , Promoter Regions, Genetic , Protein Binding , Proteomics/methods , Proto-Oncogene Protein c-ets-1/genetics , Proto-Oncogene Protein c-ets-1/metabolism , RNA-Binding Proteins/metabolism , Telomerase/metabolism
3.
Cancer Sci ; 111(11): 3976-3984, 2020 Nov.
Article in English | MEDLINE | ID: covidwho-717290

ABSTRACT

A recent outbreak of coronavirus disease (COVID-19) caused by the novel severe acute respiratory syndrome coronavirus 2 has driven a global pandemic with catastrophic consequences. The rapid development of promising therapeutic strategies against COVID-19 is keenly anticipated. Family Coronaviridae comprises positive, single-stranded RNA viruses that use RNA-dependent RNA polymerase (RdRP) for viral replication and transcription. As the RdRP of viruses in this family and others plays a pivotal role in infection, it is a promising therapeutic target for developing antiviral agents against them. A critical genetic driver for many cancers is the catalytic subunit of telomerase: human telomerase reverse transcriptase (hTERT), identified initially as an RNA-dependent DNA polymerase. However, even though hTERT is a DNA polymerase, it has phylogenetic and structural similarities to viral RdRPs. Researchers worldwide, including the authors of this review, are engaged in developing therapeutic strategies targeting hTERT. We have published a series of papers reporting that hTERT has RdRP activity and that this RdRP activity in hTERT is essential for tumor formation. Here, we review the enzymatic function of RdRP in virus proliferation and tumor development, reminding us of how the study of the novel coronavirus has brought us to the unexpected intersection of cancer research and RNA virus research.


Subject(s)
COVID-19/virology , RNA-Dependent RNA Polymerase/metabolism , SARS-CoV-2/physiology , Telomerase/metabolism , Viral Proteins/metabolism , Animals , COVID-19/enzymology , Carcinogenesis/metabolism , Humans , Virus Replication/physiology
SELECTION OF CITATIONS
SEARCH DETAIL